- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Krutz, Daniel (1)
-
Lui, Yang (1)
-
Malachowsky, Sam (1)
-
Moses, Heather (1)
-
Sternefeld, Mark (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Inequitable software is a common problem. Bias may be caused by developers, or even software users. As a society, it is crucial that we understand and identify the causes and implications of software bias from both users and the software itself. To address the problems of inequitable software, it is essential that we inform and motivate the next generation of software developers regarding bias and its adverse impacts. However, research shows that there is a lack of easily adoptable ethics-focused educational material to support this effort.To address the problem of inequitable software, we created an easily adoptable, self-contained experiential activity that is designed to foster student interest in software ethics, with a specific emphasis on AI/ML bias. This activity involves participants selecting fictitious teammates based solely on their appearance. The participant then experiences bias either against themselves or a teammate by the activity’s fictitious AI. The created lab was then utilized in this study involving 173 real-world users (age 18-51+) to better understand user bias.The primary findings of our study include: I) Participants from minority ethnic groups have stronger feeling regarding being impacted by inequitable software/AI, II) Participants with higher interest in AI/ML have a higher belief for the priority of unbiased software, III) Users do not act in an equitable manner, as avatars with ‘dark’ skin color are less likely to be selected, and IV) Participants from different demographic groups exhibit similar behavior bias. The created experiential lab activity may be executed using only a browser and internet connection, and is publicly available on our project website: https://all.rit.edu.more » « less
An official website of the United States government

Full Text Available